Ist die Schwerkraft eine Druckkraft oder Anziehungskraft ?
Ist die Schwerkraft eine
Druckkraft oder Anziehungskraft ? 

In der Februarausgabe 2003 von PM-Magazin, die moderne Welt des Wissens, ist beschrieben, dass die bisherige Annahme, dass die Schwerkraft eine Anziehungskraft ist, falsch sein soll.

Es ist eine These aufgetaucht, die behauptet, dass die Schwerkraft durch Druck entsteht.

Hier die Adresse:

Pushing Gravity, New perspectives on Le Sage’s theory of gravitation,
(paperback, 316 p.; ISBN 0-9683689-7-2), Matthew R. Edwards (ed.)

Der Link funktioniert nicht mehr.
Aus konnte ich den Link
in folgender Tabelle wiederherstellen:

Pushing Gravity
New perspectives on Le Sage’s theory of gravitation

(paperback, 316 p.; ISBN 0-9683689-7-2 )         Matthew R. Edwards (ed.)

Since Newton’s time many have proposed that gravitation arises from the absorption by material bodies of minute particles or waves filling space. Such absorption would cause bodies to be pushed into each other’s shadows. The principal early proponent of this idea was Georges-Louis Le Sage. The essays in this book explore the remarkable three hundred year saga of Le Sage’s theory, gravitational shielding and the experiments of Q. Majorana, and new and recent Le Sage Models.

    Editor's Preface

    Table of Contents

    About the Editor

Editor's Preface

To many readers of physics, the history of theories of gravitation may be summed up approximately as follows. After a chaotic period featuring vortex ether models and the like, gravity was at last put on a firm scientific footing by Newton. In the following centuries Newton’s theory saw success after success, until a few unexplained anomalies, such as the advance of the perihelion of Mercury, paved the way for Einstein’s General Relativity. The latter theory has remained without serious challenge to the present day. In this grand progression, few will likely have heard of a simple mechanical theory of gravitation, which from Newton’s time has come down through the centuries almost unchanged. Its principal early expression was given by Georges-Louis Le Sage of Geneva in the mid-eighteenth century.

Le Sage’s theory of gravitation has a unique place in science. For over three centuries it has periodically attracted some of the greatest physicists of the day, including Newton, who expressed interest in Fatio’s earlier version of the theory, and later Kelvin, who attempted to modernize the theory in the late 1800’s. At the same time, the theory has drawn just as many notable critics, including Euler, Maxwell and Poincaré. Despite frequent and spirited obituaries, Le Sage’s theory in various guises has always survived to challenge the prevailing wisdom of the day. Now, at the start of this new century, it appears that the theory may be on the rise again.

The reasons for the present resurgence of Le Sage-type models of gravitation are their simplicity and depth—features desirable in any physical theory. Whereas Newton’s theory and (later) Einstein’s relativity were essentially mathematical descriptions of the motions of bodies in gravitation, Le Sage’s theory attempts to arrive at the very cause of gravity. The basic idea runs like this. Space is filled with minute particles or waves of some description which strike bodies from all sides. A tiny fraction of the incident waves or particles is absorbed in this process. A single body will not move under this influence, but where two bodies are present each will be progressively urged into the shadow of the other. If any theory of gravity can be said to satisfy Occam’s Razor, it is surely Le Sage’s. Its simplicity and clarity guarantee that it will be conjured up again and again by those who seek to understand gravity’s mechanism, as opposed to merely its rules.

Other reasons also exist for the recent upsurge of interest. Over the last half century, it has become increasingly common to view space once more as endowed with energy-dense fields, known variously as the zero-point fields, the quantum vacuum and many other names. Since the existence of such fields is the central postulate of Le Sage-type theories, the status of such theories has correspondingly risen. In addition, parallel veins of research in geophysics and cosmology also seem to point to in the direction of Le Sage. As Halton Arp discusses in his foreword, the geophysical link is to the theory of earth expansion (as opposed to conventional plate tectonics), while the cosmological link is to alternative cosmologies (rather than the Standard Model).

The first papers in the book explore the impressive three hundred-year history of Le Sage’s theory. In the opening paper Evans discusses Le Sage’s own contribution and the discouraging reception that Le Sage received from the scientists of his day, such as Euler and Laplace. Le Sage was in fact fighting a trend in the eighteenth century away from mechanical models of gravitation. The setting for his theory was actually much more favourable in the previous century, when another Genevan, Nicolas Fatio de Duillier, burst upon the scene with a very similar theory. Fatio’s role is discussed by van Lunteren in his paper. Newton’s own views on gravitation, which at times were very close to Le Sage’s and Fatio’s, are discussed in the reprinted paper by Aiton. The paper by Edwards discusses the attempt by Kelvin and others to revive Le Sage’s theory in the late 1800’s, when the theory was shown to be compatible with the kinetic theory of gases. This paper also has an overview of some twentieth century developments in the theory.

The modern wave of Le Sage-type theories is represented in the next group of papers. (While in later centuries it became common for authors to use “Lesage” or “LeSage”, in this book we shall adopt the original spelling.) In these papers there will be seen to be many points of agreement, but also many differences. Some of the models, such as those of Van Flandern, Slabinski and Mingst and Stowe, are corpuscular models in the direct tradition of Le Sage. Others, such as those of Kierein, Edwards and Popescu-Adamut, explore electromagnetic analogues of Le Sage’s theory. Historically, there have been countless names given to the Le Sage corpuscles or waves. In some of the papers the authors have adopted the term ‘graviton’ to refer to these entities.

The paper by Radzievskii and Kagalnikova provides a good overview of Le Sage’s theory as well as a detailed mathematical description of a modern Le Sage theory. In their model, the gravitational force is propagated by material particles travelling at c. This paper was originally published in 1960 and later translated in a U.S. government technical report, of which the present paper is a slightly corrected version. Dr. Radzievskii, although reported to be ill at this time, nonetheless expressed his strong support for this project.

In his paper, Van Flandern develops Le Sage’s theory from a modern standpoint and explores its relations to such problems as the existence of gravitational shielding, the advance of the perihelion of Mercury and heating effects. As did Le Sage, he argues that the absence of observed gravitational aberration is explicable with the gravitons having superluminal velocities.

A potentially major advance in Le Sage-type theories is given in the paper by Slabinski. In the past, these theories have generally supposed that the gravitons incident on bodies are either totally scattered or totally absorbed. In the former case, no gravitational force results, while in the latter an excessive heating of bodies is expected. Slabinski shows that, provided some small fraction of the gravitons is absorbed, the scattered gravitons can indeed generate a significant force.

In his paper, Kierein suggests that the Le Sage medium is in the form of very long wavelength radiation, as had earlier been proposed by Charles Brush. Such radiation penetrates matter easily and, in Kierein’s model, a portion of the radiation traversing bodies is converted to mass through a Compton effect mechanism. The absorption of radiation leads to gravitation, while the mass increase is linked to earth expansion.

The paper by Edwards proposes that the absorption of gravitons by bodies in a Le Sage mechanism is proportional to the bodies’ velocities as measured in the preferred reference frame defined by the gravitons (essentially the same frame as the cosmic background radiation). Graviton absorption increases the mass and rest energy of the bodies, which therefore lose velocity in the preferred frame. Overall there is conservation of energy (and thus no heating effect) since the rest energy gained by the bodies equals the kinetic energy lost.

The paper by Toivo Jaakkola is adapted from a longer paper that was originally published posthumously in the memorial issue of Apeiron dedicated to him. It presents Jaakkola’s Le Sage-type model and many observations and conclusions about Le Sage theories in general. The paper by Veselov, reprinted from Geophysical Journal, presents a novel type of Le Sage mechanism, which Veselov links to earth expansion and various astrophysical phenomena.

In their paper, Mingst and Stowe present a corpuscular Le Sage model. Dynamical aspects of this and other Le Sage models are discussed in the companion paper by Stowe. In her paper, Popescu-Adamut reviews and updates the “electrothermodynamical theory of gravitation” proposed in the 1980’s by her father, Iosif Adamut.

The next several papers consider the question of gravitational shielding, with special reference to the work of Quirino Majorana. Unlike Le Sage, Majorana proposed that matter itself emits an energy flux of some kind which produces gravitational effects on other bodies. Just as in Le Sage’s theory, however, this flux would be attenuated in passing through other bodies. Majorana performed a famous set of experiments which appeared to demonstrate such a shielding effect. This work is discussed in Martins’ first paper. In his second paper, Martins examines the links between Majorana’s theory and Le Sage’s. Whereas Majorana had thought it possible to distinguish experimentally between his own theory and Le Sage’s, Martins proves that this supposition is false, i.e., that the predictions of both theories in shielding experiments are precisely the same. This finding is in keeping with the notion that the theories of Le Sage and Majorana may actually be two sides of the same coin. In some Le Sage-type theories, the Le Sage flux upon interacting with matter is converted into a secondary flux, which itself does not transmit the gravitational force. Mathematically, such models can be made to resemble Majorana-type models if the primary fluxes are disregarded and the secondary fluxes are modelled as transmitting momentum in the negative sense.

Majorana’s experiments were never repeated, however, and other confirmation of the existence of gravitational shielding has been very hard to come by. Some of the attempts to find such shielding are reviewed in the paper by Unnikrishnan and Gillies. While evidence for shielding at the present time appears limited, it can only be stated that the question remains open both theoretically and experimentally. For instance, there is the exciting possibility that the Zürich apparatus for measuring G, discussed by these authors, could also be used to directly repeat the experiments of Majorana.

In their paper von Borzeszkowski and Treder discuss possible non-relativistic effects in gravitation, such as absorption of gravity, but within the context of relativistic theories of gravitation. One such theory, originally proposed by Riemann, is examined in the following paper by Treder.

In his paper, Kokus examines the many unusual patterns in earthquakes and other seismic events and discusses the role of alternate theories of gravitation in accounting for them. He argues that many of the patterns can be accounted for in expanding earth or pulsating earth models. Buonomano, in his paper, discusses the possible roles of a Le Sage-type medium in quantum physics. The book concludes with a historical discussion by Hathaway of attempts to manipulate gravitation.

Collectively, the papers in this book show that the remarkable saga of Le Sage’s theory of gravitation may be entering a new and exciting phase. In the new century, it may even pass that Le Sage’s theory comes into prominence once more. If it does, it would not be entirely surprising. It is, after all, the simplest theory of gravitation.

Table of Contents


Halton Arp
Foreword: The Observational Impetus for Le Sage Gravity

James Evans
Gravity in the Century of Light: Sources, Construction and Reception of Le Sage’s Theory of Gravitation

Frans van Lunteren
Nicolas Fatio de Duillier on the Mechanical Cause of Universal Gravitation

E.J. Aiton
Newton’s Aether-Stream Hypothesis and the Inverse Square Law of Gravitation

Matthew R. Edwards
Le Sage’s Theory of Gravity: the Revival by Kelvin and Some Later Developments

V.V. Radzievskii and I.I. Kagalnikova
The Nature of Gravitation

Tom Van Flandern

Victor J. Slabinski
Force, Heat and Drag in a Graviton Model

John Kierein
Gravitation as a Compton Effect Redshift of Long Wavelength Background Radiation

Matthew R. Edwards
Induction of Gravitation in Moving Bodies

Toivo Jaakkola
Action-at-a-Distance and Local Action in Gravitation

K.E. Veselov
Chance Coincidences or Natural Phenomena

Barry Mingst and Paul Stowe
Deriving Newton’s Gravitational Law from a Le Sage Mechanism

Paul Stowe
Dynamic Effects in Le Sage Models

Nedelia Popescu-Adamut
The Electro-Thermodynamic Theory of Gravitation

Roberto de Andrade Martins
Majorana’s Experiments on Gravitational Absorption

Roberto de Andrade Martins
Gravitational Absorption According to the Hypotheses of Le Sage and Majorana

C.S. Unnikrishnan and G.T. Gillies
Constraints on Gravitational Shielding

H.-H. v. Borzeszkowski and H.-J. Treder
Non-Relativistic Effects in Gravitation

H.-J. Treder
Gravitational Ether and Riemann’s Theory of Gravity

Martin Kokus
Alternate Theories of Gravity and Geology in Earthquake Prediction

Vincent Buonomano
Co-operative Phenomena as a Physical Paradigm for Relativity, Gravitation and Quantum Mechanics

G.D. Hathaway
A Brief Survey of Gravity Control Experiments

About the Editor

Matthew R. Edwards studied biology, biochemistry and plant ecology at McMaster University, York University and the University of Saskatchewan. Since 1983 he has been at the Gerstein Science Information Centre of the University of Toronto. He has diverse research interests and has been the author of several articles on cosmology and the origin and early evolution of life.

Diese These wird durch folgenden Versuch untermauert:

Auszug aus der Februarausgabe 2003 des PM-Magazins, Seite 25:
In der Wissenschaft ist es üblich, theoretische Annahmen oder genaue Beobachtungen zu erhärten. Diese Experimente führte der italienische Physiker Quirino Majorana (1871 —1957) in den 1920er Jahren durch. Druckgravitation entsteht durch die teilweise Abschirmung von (bisher unbekannten) Teilchen.

Also müsste eine Masse, die vollständig von anderen Massen umgeben ist, an Gewicht verlieren. Genau das überprüfte Majorana: Er umgab im Verlauf seiner zehnjährigen Forschungen eine Testmasse erst mit einem Mantel von 100 Kilogramm Quecksilber, dann mit 10 000 Kilogramm Blei.

Ergebnis: Innerhalb der Messgenauigkeit bemerkte er tatsächlich eine Gewichtsabnahme. Die Drucktheorie der Gravitation schien experimentell bestätigt. Wiederum waren es berühmte Gelehrte (die Astronomen Henry Norris Rüssel und Arthur Eddington), die seine Ergebnisse ablehnten, aber nur aus theoretischen Gründen. An der Gründlichkeit und Sorgfalt seiner Experimente zweifelte niemand - und niemand wiederholte sie. …

Weitere Informationen und links finden Sie unter

Leider funktioniert diese Link nicht mehr.

Über  konnte ich den Link teilweise wieder herstellen:

Die Schwerkraft entsteht durch Abstoßung

Newton lieferte zwar die Formeln für die Wirkung der Gravitation, aber keine Erklärung. Und auch Einstein trug nichts zur Klärung bei, im Gegenteil. Seine Formeln waren so kompliziert, dass sogar Zufallslösungen sinnvolle Resultate lieferten, dafür war seine Theorie (1916) nicht imstande, die einfache Anziehungskraft zweier Körper richtig zu berechnen, eine Tatsache, die erst in den Neunzigerjahren des 20. Jahrhunderts dem amerikanischen Physiker Hüseyin Yilmaz auffiel. Statt des Newtonschen Wertes kam bei Einstein "null" heraus - ein offensichtlicher Unsinn.
Doch bereits im Jahr 1756 stellte der Genfer Mathematiker Georges Louis Le Sage die "Drucktheorie der Gravitation" vor. Ihr Inhalt: Zwei Körper ziehen einander nicht an, sie werden vielmehr zueinander gedrückt, durch unsichtbare Teilchen, die regellos durchs All schwirren. Stehen zwei Körper einander nahe, gibt es zwischen ihnen eine Art "Teilchenschatten" (analog dem Lichtschatten), sodass im Innenraum weniger abstoßende Teilchen vorhanden sind. Ergebnis: Die Teilchen außerhalb des Schattens drücken die beiden Körper aufeinander zu.
Diese simple Erkenntnis erklärt mit einem Schlag zwei weitere Erscheinungen der Natur, die mindestens so geheimnisvoll sind wie die Schwerkraft: die Trägheit (Körper lassen sich nur mit Gewalt aus der Ruhe bringen) und die relativistische Massenzunahme (Je schneller ein Körper ist, desto schwieriger wird es, ihn noch schneller zu machen). Beides erklärt sich zwanglos als Widerstand des Teilchenstroms gegen bewegte Körper.
Mehr über diese erstaunliche Theorie und ihre Konsequenzen in der Titelgeschichte von PM 2/2003: "Das Geheimnis Gravitation".


In dem Link steht nicht alles, was im Heft steht:

Weiter steht im Heft: Bereits im 19. Jahrhundert fiel den Astronomen auf, dass die Mondbahn reichlich irregulär und mit Newton allein nicht zu erklären ist. Der Astronom Simon Newcomb, der diese Abweichungen entdeckt hatte, widmete die letzten 30 Jahre seines Lebens der Mondbahn. Vergeblich.

Selbst Einstein versuchte, die Irregularitäten zu erklären, aber auch er kam nicht weiter. Im Jahr 1910 machte sich der deutsche Astronom Kurt Felix Ernst Bottlinger (1888 -1934) an die Arbeit, die Daten zu überprüfen. Sollte die Drucktheorie die irregulären Daten erklären können?

Er untersuchte die Monddaten zwischen 1700 und 1910 und kam zu der Erkenntnis: Die Absorptions- oder Drucktheorie der Gravitation kann die Schwankungen perfekt erklären. Und warum weiß keiner davon? Die Astronomen haben das Problem inzwischen selbst gelöst, auf geniale Weise. Im Jahre 1955 definierte die Internationale Astronomische Union die astronomische Zeit auf neue Art, und zwar in Bezug auf den Mond.

Die Definition sieht in etwa so aus:
Die Zeit wird so gemessen, dass der Mond eine regelmäßige Bahn um die Erde beschreibt. Damit sind die Unregelmäßigkeiten der Mondbahn von selbst verschwunden - per Definition!
Zitat Ende

Kommentar von Rolf Keppler:
Im Grunde genommen ist es von der Internationale Astronomische Union auch nicht richtig, so zu tun, als ob der Mond eine regelmäßige Bahn beschreibt, und hierauf eine neue Zeitrechnung zu definieren, die in Wirklichkeit auf der Unregelmäßigkeit der Mondbahn im Vollkugelweltbild beruht. Schon Johannes Lang beschreibt in seinen Werken zur Hohlwelttheorie die Fehler in der Mondbahn.

Gleichzeitig zeigt er durch Rechnung, dass die Fehler in der Mondbahn im Vollkugelweltbild verschwinden, wenn man den Mond als „ganz normalen“ Planeten betrachtet, der nicht um die Erde, sondern wie die anderen Planeten um die Fixsternkugel kreist.
Herr Diehl will zu dieser Mondbahnproblematik einen neuen Aufsatz mit Berechnung schreiben.
Ich denke, dass es sich lohnt, das Heft zu kaufen. Es werden noch andere widersprüchliche Fakten beschrieben.


Diese Seite weiterempfehlen